

Depth from Stereo Polarization in Specular Scenes for Urban Robotics

Kai Berger, Randolph Voorhies, Larry H. Matthies

presented at the ICRA 2017 conference May 29th – June 3rd 2016

Motivation

- Specular surfaces challenging for typical stereo algorithms in robotics
- SGBM on a water puddle:

Related Work

For depth perception in specular scenes

- Trinocular and Multicamera Setups [1]
 - Neglect superposition effects
- Time-of flight cameras [2]
 - Limited by range, material, angle of incidence
- Optical Flow [3]
 - Assumptions on Light and surface shape
- Polarization-based [4,5,6]
 - Confined to lab environment
 - Light source known

Left view, Polarizer at 0 degrees

Left view, Polarizer at 90 degrees

Left view, Polarizer at 0 degrees

Left view, Polarizer at 90 degrees

Our Goal: Incorporate polarization into stereo vision Modus operandi

- 1) Provide synthetic data to have ground truth
- 2) Develop and test algorithm on synthetic data
- 3) Capture real-world images with polarizer
- 4) Test algorithm on real-world images

Image Synthesis

- Constrain surface normals by polarization
 - Per pixel Angle of Polarization

 $AOP = \frac{1}{2} \arctan(S2/S1)$

with

S2=I135-I45 S1=I90-I0

AOP denotes rotation of the plane of incidence around the viewing direction.

This constrains the surface normal to lie in that plane.

- Constrain surface normals by Polarization
 - Per pixel Angle of Polarization
- Surface smoothness
- Photo-consistency

Borrow from Woodford et al. [7]

$$\begin{aligned} min_{D(x)} E_{\text{photo}+\text{smooth}} &= \sum_{x} f(I_{1}^{\Pi}(x,D(x)) - I_{0}(x),V) \\ &+ \sum_{\mathcal{N} \in N} W_{1}(\mathcal{N}) \rho(\mathcal{S}(\mathcal{N},\mathcal{D})) \end{aligned} \tag{1}$$

Add surface normal constraint to [7], arrive at

$$E_{\text{photo+smooth}} = \sum_{x} f(I_{1}^{\Pi}(x, D(x)) - I_{0}(x), V)$$

$$+ \sum_{\mathcal{N} \in N} W_{1}(\mathcal{N}) \rho(\mathcal{S}(\mathcal{N}, \mathcal{D}))$$

$$+ \sum_{x} W_{2}(\mathcal{N}(x)) \rho(\mathcal{A}(\mathcal{N}(x), \mathcal{D}, \alpha(x)))$$

$$(6)$$

$$\mathcal{A}(\mathcal{N}, \mathcal{D}, \alpha) = tan^{-1}(\Gamma((\Pi^{-1}(p, D(p)) - \Pi^{-1}(q, D(q)) \times \Pi^{-1}(r, D(r)) - \Pi^{-1}(q, D(q)))) - \alpha),$$

$$\{p, q, r\} \in \mathcal{N}$$
(7)

	Ours			Woo2009[25]			SGBM[1]			
	Mean	Out-2 [Percent]	Out-4 [Percent]	Mean	Out-2 [Percent]	Out-4 [Percent]	Mean	Out-2 [Percent]	Out-4 [Percent]	Density [Percent]
v1-collonade	0.608	0.730	0.000	0.651	0.471	0.000	0.545	0.226	0.080	99.755
v2-pipes	0.426	0.424	0.086	1.319	6.206	3.392	1.165	4.913	2.107	98.743
v3-walltexture	0.528	0.041	0.000	4.566	21.012	15.312	5.936	20.938	17.249	98.590
r1-hall2	0.906	3.946	0.038	10.647	25.407	23.605	9.061	21.406	19.023	99.773
r2-hall3	3.713	12.065	5.213	19.435	44.378	40.269	15.771	44.310	40.832	83.598
r3-water4	0.302	0.043	0.000	3.004	4.560	4.287	2.355	3.235	2.823	99.408
r4-bldg10	1.749	7.344	0.000	8.790	7.425	5.433	2.795	13.151	2.369	99.445

Recapitulation

- Specular surfaces and their challenge to stereo vision
- Polarization behavior of reflected light
 - Angle of Polarization
- Simulation of ground truth with Jones calculus
- Real world scenes
 - Multiple images with rotated Linear Polarizers
- Surface normal constraint
 - Applied as ternary term in a graph cut approach
- Improvement over current algorithms in
 - Simulated Scenes
 - Real World Imagery

Fin.

Thank you for your attention.

References

- [1] Bhat, D. N. and Nayar, S. K., Stereo and specular reflection, International Journal of Computer Vision 26 (2), 91{106 (1998).
- [2] Hebert, M. and Krotkov, E., 3D measurements from image laser radars: how good are they?, International Journal of Image and Vision Computing 10 (3), 170(178 (1992).
- [3] Roth, S. and Black, M. J., Specular flow and the recovery of surface structure, in Conference on Computer Vision and Pattern Recognition, (2006).
- [4] Wolff, L. B. and Boult, T. E., Constraining object features using a polarization reflectance model, IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (7), 635{657 (1991).
- [5] Atkinson, G., Hancock, E. R., et al., *Recovery of surface orientation from diuse polarization*, ImageProcessing, IEEE Transactions on 15 (6), 1653{1664 (2006)
- [6] Kadambi, A., Taamazyan, V., Shi, B., and Raskar, R., *Polarized 3d: High-quality depth sensing with polarization cues*, in [Proceedings of the IEEE International Conference on Computer Vision], 3370{3378 (2015).
- [7] Woodford, O., Torr, P., Reid, I., and Fitzgibbon, A., *Global stereo reconstruction under second-order smoothness priors*, Pattern Analysis and Machine Intelligence, IEEE Transactions on 31 (12), 2115{2128 (2009).

Depth from Stereo Polarization in Specular Scenes for Urban Robotics

Preview Talk

Kai Berger, Randolph Voorhies, Larry H. Matthies

presented at the ICRA 2017 conference May 29th – June 3rd 2016

Motivation

- Specular surfaces challenging for typical stereo algorithms in robotics
- SGBM on a water puddle:

Add surface normal constraint to [7], arrive at

$$E_{\text{photo+smooth}} = \sum_{x} f(I_{1}^{\Pi}(x, D(x)) - I_{0}(x), V)$$

$$+ \sum_{\mathcal{N} \in N} W_{1}(\mathcal{N}) \rho(\mathcal{S}(\mathcal{N}, \mathcal{D})) \qquad (6)$$

$$+ \sum_{x} W_{2}(\mathcal{N}(x)) \rho(\mathcal{A}(\mathcal{N}(x), \mathcal{D}, \alpha(x)))$$

$$\mathcal{A}(\mathcal{N}, \mathcal{D}, \alpha) = tan^{-1}(\Gamma((\Pi^{-1}(p, D(p)) - \Pi^{-1}(q, D(q))) \times \Pi^{-1}(r, D(r)) - \Pi^{-1}(q, D(q)))) - \alpha),$$

$$\{p, q, r\} \in \mathcal{N}$$
(7)

Fin.

Thank you for your attention.

